Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
Noble metallic nanostructures with strong electric near-field enhancement can significantly improve nanoscale light–matter interactions and are critical for high-sensitivity surface-enhanced Raman spectroscopy (SERS). Here, we use an azimuthal vector beam (AVB) to illuminate the plasmonic tips circular cluster (PTCC) array to enhance the electric near-field intensity of the PTCC array, and then use it to improve SERS sensitivity. The PTCC array was prepared based on the self-assembled and inductive coupled plasmon (ICP) etching methods. The calculation results show that, compared with the linearly polarized beam (LPB) and radial vector beam excitations, the AVB excitation can obtain stronger electric near-field enhancement due to the strong resonant responses formed in the nanogap between adjacent plasmonic tips. Subsequently, our experimental results proved that AVB excitation increased SERS sensitivity to 10-13 mol/L, which is two orders of magnitude higher than that of LPB excitation. Meanwhile, the PTCC array had excellent uniformity with the Raman enhancement factor calculated to be 2.4×108. This kind of vector light field enhancing Raman spectroscopy may be applied in the field of sensing technologies, such as the trace amount detection.
surface-enhanced Raman spectroscopy plasmonic tips circular cluster array azimuthal vector beam surface plasmon polaritons 
Chinese Optics Letters
2023, 21(3): 033603
Author Affiliations
Abstract
1 Northwestern Polytechnical University, School of Physical Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, Xi’an, China
2 Shenzhen University, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen, China
Cylindrical vector beams and vortex beams, two types of typical singular optical beams characterized by axially symmetric polarization and helical phase front, possess the unique focusing property and the ability of carrying orbital angular momentum. We discuss the formation mechanisms of such singular beams in few-mode fibers under the vortex basis and show recent advances in generating techniques that are mainly based on long-period fiber gratings, mode-selective couplers, offset-spliced fibers, and tapered fibers. The performances of cylindrical vector beams and vortex beams generated in fibers and fiber lasers are summarized and compared to give a comprehensive understanding of singular beams and to promote their practical applications.
cylindrical vector beam vortex beam orbital angular momentum two-mode fiber fiber laser beam shaping 
Advanced Photonics
2021, 3(1): 014002
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Physics Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
2 MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
We present the generation of the nanosecond cylindrical vector beams (CVBs) in a two-mode fiber (TMF) and its applications of stimulated Raman scattering. The nanosecond (1064 nm, 10 ns, 10 Hz) CVBs have been directly produced with mode conversion efficiency of ~18 dB (98.4%) via an acoustically induced fiber grating, and then the stimulated Raman scattering signal is generated based on the transmission of the nanosecond CVBs in a 100-m-long TMF. The transverse mode intensity and polarization distributions of the first-order Stokes shift component (1116.8 nm) are consistent with the nanosecond CVBs pump pulse.
vector beam stimulated Raman scattering fiber grating 
Chinese Optics Letters
2021, 19(1): 010603
Author Affiliations
Abstract
1 Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
2 Université Polytechnique Hauts de France, IEMN DOAE CNRS, Campus Le Mont Houy, 59309, Valenciennes Cedex, France
Goodness of fit is demonstrated for theoretical calculation of z-scan data based on beams propagating in the nonlinear medium and the Fresnel–Kirchhoff diffraction integral in experiments with high nonlinear refraction and absorption. The constancy of nonlinear optical parameters is achieved regardless of sample thickness and laser intensity, which clarifies the physical significance of optical parameters. We have obtained γ = 2.0 × 10?19 m2/W and β = 5.0 × 10?13 m/W for carbon disulfide excited by a pulsed laser at 800 nm with pulse duration of 35 fs, which are independent of sample thickness and laser intensity. Affirming constancy of the extracted parameters to the incident light intensity may become a practice to verify the goodness of the z-scan experiment.
z-scan technique nonlinear refraction and absorption nonlinear optical coefficient carbon disulfide 
Chinese Optics Letters
2020, 18(7): 071903
Author Affiliations
Abstract
1 Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, North Western Polytechnical University, Xi’an 710072, China
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
3 LEES Program, Singapore-MIT Alliance for Research & Technology (SMART), Singapore 138602, Singapore
A polarization-insensitive plasmonic absorber is designed consisting of Au fishnet structures on a TiO2 spacer/Ag mirror. The fishnet structures excite localized surface plasmon and generate hot electrons from the absorbed photons, while the TiO2 layer induces Fabry–Perot resonance, and the Ag mirror acts as a back reflector. Through optimizing the TiO2 layer thickness, numerical simulation shows that 97% of the incident light is absorbed in the Au layer. The maximum responsivity and external quantum efficiency of the device can approach 5 mA/W and ~1%, respectively, at the wavelength of 700 nm.
plasmonic absorber Fabry–Perot resonance internal photoemission surface plasmon 
Chinese Optics Letters
2020, 18(5): 052402
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
2 e-mail: ting.mei@ieee.org
Surface-enhanced Raman spectroscopy (SERS) with high-sensitivity performance is a very necessary detection technology. Here, we present a method for increasing the performance of SERS based on silver triangular nanoprism arrays (ATNAs) vertically excited via a focused azimuthal vector beam (AVB). The ATNA substrates with different structural parameters are prepared based on the traditional self-assembled and modified film lift-off technique. Based on a theoretical model established adopting the structural parameters of the ATNA substrates, theoretical simulation results show that AVB excitation can achieve greater electric-field enhancement than linearly polarized beam (LPB) excitation. Experimental result indicates that SERS sensitivity obtained via AVB excitation is 10 13 M (1 M = 1 mol/L) using rhodamine 6G (R6G) as the target analyte, which is 2 orders of magnitude lower than that of LPB excitation (10 11 M). Meanwhile, the uniformity and reproducibility of the ATNA substrates are examined using Raman mapping and batch-to-batch measurement, respectively, and the Raman enhancement factor is calculated to be 3.3×107. This method of vector light field excitation may be used to improve the SERS performance of the substrates in fields of ultra-sensitive Raman detection.
Photonics Research
2019, 7(12): 12001447
Author Affiliations
Abstract
1 Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
2 Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
3 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
4 MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
5 e-mail: zhutao@cqu.edu.cn
Acousto-optic interactions, employed in the ultrafast laser regulation, possess remarkable advantages for fast tuning performance in a wide spectral range. Here, we propose an ultrafast fiber laser whose wideband tunability is provided by an acousto-optic structure fabricated with an etched single-mode fiber. Because of the laser polarization conversion induced by the coupling between the core and cladding vector modes in the etched fiber, a band-pass characteristic of the acousto-optic interaction is achieved to effectively regulate the inner-cavity gain range. Cooperating with a saturable absorber based on single-wall carbon nanotubes (SWCNTs) with polarization robustness, a soliton operating state is achieved in the tunable erbium-doped fiber laser. By controlling the acoustical wave frequency from 1.039 to 1.069 MHz, this soliton laser can be conveniently tuned in a wide spectral range from 1571.52 to 1539.26 nm. Meanwhile, the laser pulses have near-transform-limited durations stably maintaining less than 2 ps at different wavelength channels, owing to the broadband nonlinear absorption of SWCNTs.
Photonics Research
2019, 7(7): 07000798
张文定 1,2,*李鑫 1,2白家浩 1,2张录 1,2[ ... ]赵建林 1
作者单位
摘要
1 西北工业大学理学院陕西省光信息技术重点实验室, 陕西 西安 710072
2 西北工业大学理学院超常条件材料物理与化学教育部重点实验室, 陕西 西安 710072
光纤结构光场作为光场调控的一个重要分支,逐渐引起了研究者们的广泛关注。首先基于光纤矢量模式理论,讨论了光纤中具有空间偏振/相位奇异特性的结构光场的产生机理;然后,介绍了光纤结构光场的产生方法,如长周期光纤光栅耦合法、光纤端面微结构法和轨道角动量转换法等;最后,介绍了光纤结构光场在超分辨成像、涡旋光通信、等离子针尖纳米聚焦和非线性频率转换等方面的一些典型应用。
物理光学 光场调控 矢量光场 涡旋光场 模式耦合 
光学学报
2019, 39(1): 0126003
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
2 MOE Key Laboratory of Optoelectronic Technology and Systems, Chongqing University, Chongqing 400044, China
3 MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
4 e-mail: ting.mei@ieee.org
The synergy of a plasmonic tip and fiber-based structure light field excitation can provide a powerful tool for Raman examination. Here, we present a method of Raman spectrum enhancement with an Ag-nanoparticles (Ag-NPs)-coated fiber probe internally excited via an azimuthal vector beam (AVB), which is directly generated in a few-mode fiber by using an acoustically induced fiber grating. Theoretical analysis shows that gap mode can be effectively generated on the surface of the Ag-NPs-coated fiber probe excited via an AVB. The experimental result shows that the intensity of Raman signal obtained with analyte molecules of malachite green by exciting the Ag-NPs-coated fiber probe via an AVB is approximately eight times as strong as that via the linear polarization beam (LPB), and the activity of the AVB-excited fiber probe can reach 10 11 mol/L, which cannot be achieved by LPB excitation. Moreover, the time stability and reliability are also examined, respectively.
Photonics Research
2019, 7(5): 05000526
Author Affiliations
Abstract
1 Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
3 LEES Program, Singapore-MIT Alliance for Research & Technology (SMART), Singapore 138602, Singapore
Plasmon induced hot electrons have attracted a great deal of interest as a novel route for photodetection and light-energy harvesting. Herein, we report a hot electron photodetector in which a large array of nanocones deposited sequentially with aluminum, titanium dioxide, and gold films can be integrated functionally with nanophotonics and microelectronics. The device exhibits a strong photoelectric response at around 620 nm with a responsivity of 180 μA/W under short-circuit conditions with a significant increase under 1 V reverse bias to 360 μA/W. The increase in responsivity and a red shift in the peak value with increasing bias voltage indicate that the bias causes an increase in the hot electron tunneling effect. Our approach will be advantageous for the implementation of the proposed architecture on a vast variety of integrated optoelectronic devices.
Photonics Research
2019, 7(3): 03000294

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!